
Classical nucleation theory of the one-component plasma

Randall L. Cooper1,2 and Lars Bildsten2,3

1Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA
2Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, California 93106, USA

3Department of Physics, Broida Hall, University of California, Santa Barbara, California 93106, USA
�Received 19 December 2007; published 12 May 2008�

We investigate the crystallization rate of a one-component plasma �OCP� in the context of classical nucle-
ation theory. From our derivation of the free energy of an arbitrary distribution of solid clusters embedded in
a liquid phase, we derive the steady-state nucleation rate of an OCP as a function of the Coulomb coupling
parameter �. Our result for the rate is in accordance with recent molecular dynamics simulations, but it is
greater than that of previous analytical estimates by many orders of magnitude. Further molecular dynamics
simulations of the nucleation rate of a supercooled liquid OCP for several values of � would clarify the physics
of this process.
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I. INTRODUCTION

The one-component plasma �OCP� consists of a single
species of N charged ions of mass m in a volume V in a
uniform neutralizing electron background. This idealized
system is a model for astrophysical settings such as neutron
star crusts and white dwarf interiors. The dimensionless cou-
pling parameter

� =
�Ze�2

akBT
�1�

characterizes the state of the OCP, where Ze is the ion’s
charge, a= �3 /4�nI�1/3 is the mean distance between ions at
number density nI=N /V, and T is the temperature. We con-
sider the ions to be classical with a de Broglie wavelength
�= �h2 /2�mkBT�1/2�a. For ��1, the Coulomb coupling is
weak and the ions behave like an ideal Maxwell-Boltzmann
gas. For ��1, the Coulomb coupling is large and the system
is in the liquid phase until ���m�175 �1,2�, when the ions
undergo a first-order phase transition into a periodic lattice
with a body-centered-cubic configuration.

The Helmholtz free energy of the OCP in the liquid phase
is written as F=Fid+Fex, where the ideal part Fid

=NkBT�ln�nI�
3�−1�, and interactions are incorporated into

the “excess” part Fex=−kBT ln�ZN /VN�, where ZN is the con-
figuration integral �3�. In the noninteracting limit, ZN→VN

and Fex→0. Simulations of the liquid OCP have generated
accurate fitting formulas for the reduced excess free energy
fex���=Fex /NkBT �e.g., �4��, and calculations of the solid-
state free energy �e.g., �5�� allow for the determination of �m.

Crystallization of an OCP occurs via nucleation, the pro-
cess by which small crystals form via localized fluctuations
in the liquid and grow via the accretion of surrounding ions
�see, e.g., �6��. Empirically, most pure liquids can be super-
cooled �in our case ���m� without solidifying, which im-
plies that a kinetic barrier to nucleation exists �e.g., �7��.
Monte Carlo �8,9� and molecular dynamics �10� simulations
demonstrate that such a kinetic barrier exists in an OCP as
well. Localized fluctuations of sufficient amplitude can gen-
erate crystals large enough to overcome the kinetic barrier,

and hence they are thermodynamically stable. Such crystals
subsequently grow and facilitate the phase transition.

The rate at which astrophysical solids grow can affect the
degree of chemical phase separation during the solidification
of both white dwarf interiors ��11�, and references therein�
and neutron star crusts �12�, the existence of an amorphous
glassy state in white dwarf interiors �13,14�, and the preva-
lence of defects and impurities in neutron star crusts �15,16�.
Furthermore, the time at which the latent heat of crystalliza-
tion is released within a white dwarf affects its observed
cooling rate �e.g., �17��. Unfortunately, the nucleation rate of
an OCP is not well understood. Several authors �14,15,18,19�
assumed that classical nucleation theory �6� applied to the
OCP, but the accuracy of their assumptions was untested.
Daligault �10� was the first to directly study nucleation of an
OCP using molecular dynamics simulations. Although his
results were qualitatively consistent with classical nucleation
theory, it was unclear whether or not the results agreed quan-
titatively. In this paper, we reexamine the nucleation of an
OCP in the context of classical nucleation theory, but with a
different approach to the statistical physics of an ensemble of
solid clusters embedded in a liquid phase. We find a steady-
state nucleation rate as a function of � in quantitative accor-
dance with those of �10�.

We begin in Sec. II by reviewing what is known about the
excess free energies for multicomponent plasmas and then
deriving the minimum reversible work of cluster formation
and the equilibrium distribution of cluster sizes. We use these
results to deduce the nucleation rate in Sec. III, and we com-
pare this rate, along with that used in previous work, to the
results of �10� in Sec. IV. We close in Sec. V by discussing
our results and suggesting future numerical experiments and
analytic improvements to this work.

II. MINIMUM REVERSIBLE WORK OF CLUSTER
FORMATION

We consider a classical OCP consisting of NI ions of mass
m in a uniform neutralizing background of electrons at ne
=ZnI. Motivated by the typical astrophysical context, we also
assume that degenerate electrons supply all of the pressure so
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that ne is constant during any phase change and set by charge
neutrality. However, before discussing how we treat solid
clusters embedded in a liquid OCP, it is important to clarify
what is known about mixtures of ions of different charges.

Hansen et al. �20� first showed that the excess Helmholtz
free energy in a mixture of ions of charges Zi and number Ni
in a volume V is simply given by the sums of the excess free
energies of each separate species at the same electron den-
sity:

Fex = kBT�
i

Nif
ex��i� . �2�

Here �i=Zi
5/3�e and �e=e2 /aekBT, where ae= �3 /4�ne�1/3 is

the mean distance between electrons, and all �i�1. Recent
simulations �4� have shown that the deviations from this
simple linear mixing rule are less than 0.05%. Hence, to an
excellent approximation, the free energy of a mixture of liq-
uid ions is simply

Ftotal

kBT
= �

i

Ni�ln�Ni�i
3

V
	 − 1
 + �

i

Nif
ex��i� . �3�

Later authors chose to write this equation differently by us-
ing the fits f l of the total Helmholtz free energies of each
pure state and then mixing them. This results in the more
often seen equation

Ftotal

kBT
= �

i

Nif l��eZi
5/3� + �

i

Ni ln� ZiNi

�Z�Ntotal
	 , �4�

where �Z� is the average charge. The last term is minus the
entropy of mixing �see e.g., �20,21� and the Appendix�, al-
though it originates simply from charge conservation at a
fixed ne. This term will appear in our derivation of the mini-
mum reversible work of cluster formation.

This knowledge of mixing at fixed ne motivates our red-
erivation of the minimum reversible work of cluster forma-
tion, and thereby the equilibrium cluster distribution, from
the total Helmholtz free energy Ftotal of an arbitrary distribu-
tion of clusters. Following Frenkel �22� �see also �23,24��,
we consider clusters that contain different numbers of ions to
be distinct species, and we consider all clusters that contain
the same number of ions to be indistinguishable. The latter is
an approximation because such clusters could have different
morphologies. Thus we assume that, for each cluster size,
there exists a unique configuration of ions for which the total
surface free energy is a minimum, that this configuration is
spherical, and that all clusters of this size conform to this
configuration.

The total Helmholtz free energy of the system is

Ftotal

kBT
= N1f l + �

i=2

�

Ni�ifs + i2/3��

+ �
i=1

�

Ni�ln� Ni

Ntotal
	 + ln� Zi

�Z�
	
 , �5�

where f lkBT and fskBT are the free energies of one ion in the
pure liquid and pure solid state, respectively, �kBT is propor-
tional to the surface free energy of an ion at the boundary of

a cluster, Ni and Zi= iZ are the number and charge, respec-
tively, of clusters �including liquid monomers� that consist of
i ions,

Ntotal = �
i=1

�

Ni �6�

is the total number of clusters �including monomers�, and

�Z� = �
i=1

�

Zi
Ni

Ntotal
�7�

is the average charge of the clusters. Equation �5� is subject
to the constraint

NI = �
i=1

�

iNi. �8�

From Eq. �5�, the chemical potentials of monomers and clus-
ters are

	1

kBT
= f l + ln� Z1N1

�Z�Ntotal
	 + 1 −

Z1

�Z�
, �9�

	i

kBT
= ifs + i2/3� + ln� ZiNi

�Z�Ntotal
	 + 1 −

Zi

�Z�
, �10�

respectively. Equation �9�, the chemical potential of a liquid
monomer, is identical to that of �25�. According to classical
nucleation theory, clusters grow or shrink by the addition or
subtraction of single monomers. Thus in chemical equilib-
rium 	i=	i−1+	1, and so

	i = i	1 �11�

by iteration. From Eqs. �9�–�11� and noting that �Z�Ntotal
=ZNI, the equilibrium distribution of clusters is

iNi

NI
= �N1

NI
	i

exp
− �i�fs − f l − 1� + i2/3� + 1�� , �12�

which is in the form of the law of mass action. The monomer
concentration, and hence the concentration of all clusters, is
found by invoking the constraint of Eq. �8�. Alternatively,
Eq. �12� can be written in terms of the Boltzmann distribu-
tion P�i�=exp�−
f i�, where P�i�= iNi /NI is the probability
that an ion picked at random is a member of a cluster of size
i and


f i = �− ln�N1/NI� , i = 1,

i�fs − f l − 1 − ln�N1/NI�� + i2/3� + 1, i � 2,
�

�13�

is the minimum reversible work divided by kBT of forming a
cluster of size i. Demanding that P�i� be normalized then
yields N1 /NI.

III. STEADY-STATE NUCLEATION RATE

We follow the treatment of classical nucleation theory by
Kelton �6� and derive the steady-state cluster nucleation rate.
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We consider an OCP at fixed � that is entirely in the liquid
state at time t=0 and calculate the rate of cluster formation
for t�0, when N1�NI, and so


f i = i�fs − f l − 1� + i2/3� + 1, �14�

from Eq. �13�. We use the fit of �1� for f l���, where we take
the coefficients derived from the simulation data of �26�, and
we use the fit of �5� for fs���. For sufficiently large �, �fs
− f l−1��0. The fit of fs given by Eqs. �10� and �15� of �5� is
valid only for 170
�
2000, and the above inequality is
easily satisfied for the entire range of � in which the fits are
applicable. The minimum � above which �fs− f l−1��0 is
unknown. Since ��0, there exists a critical size

i� = � 2�/3
1 + f l − fs

	3

�15�

such that the reversible work of cluster formation, 
f i, is a
maximum. Cluster growth is energetically favorable for clus-
ters of size i� i� and unfavorable for clusters of size i� i�.
Equation �14� can now be written in the convenient form


f i =
�2�/3�3

2�1 + f l − fs�2�3� i

i�

	2/3
− 2� i

i�

	
 + 1. �16�

In classical nucleation theory, crystallization occurs via the
formation and subsequent growth of critical clusters of size
i�. Clusters of size i� i� are formed via equilibrium fluctua-
tions and are presumed to be transient. Equation �12� gives
their distribution. Clusters of size i� i� are presumed to be
stable. Such clusters only grow with time. The formation of
stable clusters is therefore a two-step process: a stable cluster
forms when �a� equilibrium fluctuations in the liquid phase
generate a transient cluster of size i� and �b� that cluster
accretes an additional monomer. Therefore, the steady-state
nucleation rate J, defined to be the number of solid clusters
formed per second, is roughly equal to the number of critical
clusters of size i� times the rate at which a monomer attaches
to a critical cluster. Kelton �6� performs a more thorough
derivation of the nucleation rate and finds

J�NI,�� =
24Di�

2/3

a2 NI� 
f i�

3�i�
2	1/2

exp�− 
f i�
� , �17�

where D is the diffusion coefficient and �
f i�
/3�i�

2�1/2 is the
Zeldovich factor. We use Eq. �17� for the steady-state nucle-
ation rate of an OCP. For D, we use the classical OCP dif-
fusion coefficient �27�

D = 2.95�pa2�−1.34, �18�

where �p= �4�nI�Ze�2 /m�1/2 is the ion plasma frequency. Re-
cent calculations have verified the accuracy of this expres-
sion for ���m �28,29� as well as for ���m �30�. For the
normalized surface free energy �, we follow �15� and �18�
and set

� = 4�� 3

4�
	2/3

��
kBTm

kBT
= �36��1/3��� �

�m
	 , �19�

where ��0.5 is the ratio of the interfacial energy and heat of
fusion empirically derived from liquid metal experiments

�e.g., �31,32�� and �kBTm is the enthalpy of melting per ion.
For this work, we set �=0.77 �5,33�.

IV. COMPARISON TO PREVIOUS WORK

Several authors have investigated the homogeneous
nucleation rate of an OCP �14,15,18,19�. However, in deriv-
ing the minimum reversible work of cluster formation 
f i,
they assumed that the entropy of mixing is simply that of an
ideal gas; i.e., the term ln�Zi / �Z�� in Eq. �5� was omitted.
Consequently, they find 
f i= i�fs− f l�+ i2/3�, and Eqs. �15�
and �16� become

i� = � 2�/3
f l − fs

	3

, �20�


f i =
�2�/3�3

2�f l − fs�2�3� i

i�

	2/3
− 2� i

i�

	
 . �21�

We demonstrate below that previous calculations result in a
nucleation rate that is orders of magnitude lower that the
rates deduced from simulations, whereas our model predicts
a rate closer to that found numerically. The steady-state
nucleation rate per ion as a function of � for both models is
shown in Fig. 1.

Presently, crystallization of an OCP is studied only via
numerical simulations. Although there are many calculations
of the free-energy difference of the pure liquid and pure solid
states as a function of �, few have investigated the onset of
crystallization. Ogata �8� and DeWitt et al. �9� studied nucle-
ation in an OCP using Monte Carlo simulations. Unfortu-
nately, time is not a variable in Monte Carlo simulations, so
that the rate of nucleation is difficult to calculate �although
see �34��.

Recently, Daligault �10� performed molecular dynamics
simulations to investigate the kinetics of nucleation in a su-
percooled OCP. Using NI=4394 ions, he calculated the total
number of solid nuclei as a function of time for �=400 and
300. In the �=400 calculation �see Fig. 4 of �10��, following
a short period of transient nucleation, there is a significant
period of time during which steady-state nucleation takes
place, as evidenced by the nearly constant slope in the plot of

10-25
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200 400 600 800
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ω
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I

)

Γ

This Work
Previous Work

FIG. 1. Steady-state nucleation rate per ion as a function of �.
“This Work” is the rate calculated from our model, and “Previous
Work” is the rate calculated using the models of previous authors.
Our calculations predict that the nucleation rate of a one-component
plasma is �105 times higher than previously assumed for all values
of �.

CLASSICAL NUCLEATION THEORY OF THE ONE-… PHYSICAL REVIEW E 77, 056405 �2008�

056405-3



the number of clusters as a function of time. In the �=300
calculation �see Fig. 8 of �10��, there is no obvious period of
time during which steady-state nucleation occurs. To be con-
sistent with our estimate from the previous calculation, we
estimate JMD, the steady-state nucleation rate deduced from
molecular dynamics simulations, from the period of time
during which the nucleation rate is nearly constant, which
occurs just before nucleation saturates. In Table I, we list the
inferred values of JMD as well as the nucleation rates calcu-
lated using both Eqs. �15� and �16� of our model and Eqs.
�20� and �21� from previous models. Our model predicts
nucleation rates that are in reasonable agreement with the
results of Daligault �10�, whereas the predictions of previous
models are far too low.

V. DISCUSSION

Through an improved treatment of the statistical physics
of the distribution of solid clusters in the liquid phase, we
have developed a model of steady-state nucleation in an
OCP, and the results of our model are in accordance with
those of the time-dependent molecular dynamics simulations
of �10�. Our results suggest that crystallization in an OCP
occurs at a rate that is more than five orders of magnitude
higher than previously assumed.

Nucleation in an OCP differs from nucleation in many
other media because of two unique features of an OCP: �a�
The degenerate electron background, which supplies the
pressure, is unaffected during the phase transition. Conse-
quently, both pressure and volume remain constant. Although
the complete noninteraction of the electrons is an approxi-
mation of the OCP model, the role electrons play in more
realistic models is negligible �1�. �b� The binding of ions of
like charge in a crystal is weak. This is reflected in the dif-
ference of the liquid and solid free energies. Indeed, this
difference does not exceed kBT �i.e., f l− fs does not exceed 1�
until � /�m=Tm /T�2.8. The combination of these two fea-
tures has interesting implications for the crystallization of an
OCP. In particular, nucleation in an OCP is driven to a sig-
nificant degree simply by the increase in entropy resulting
from cluster formation: the change in the total energy of a
supercooled OCP when a cluster forms is small relative to
the increase in the entropy. In fact, Eq. �14� implies that a
population of solid clusters will exist at a given time for a
range of ���m because the entropy of an ensemble of clus-
ters embedded in a liquid OCP is higher than that of the pure
liquid phase. This may be related to the caging effect ob-
served in molecular dynamics simulations of an OCP in the

liquid phase �28,35�. Furthermore, we note that a reanalysis
of the entropy of mixing term and thereby the classical
nucleation rate may be needed for other supercooled liquids.

There are a few important issues that we have not ad-
dressed. The surface free energy of a solid cluster in a Cou-
lomb liquid is not known. The expression for the surface
free-energy contribution used in this work is only our best
estimate, but we cannot be confident that the numerical co-
efficient in Eq. �19� is accurate. This issue requires further
investigation via molecular dynamics simulations. Some of
the assumptions we made in Sec. II may not be valid. We
assume that solid clusters grow or shrink by the addition or
subtraction of liquid monomers, but the simulations of Dali-
gault �10� imply both that two solid clusters can fuse to-
gether and that a solid cluster can fission into two or more
clusters. Furthermore, we assume that all clusters of a given
size have the same morphology and are thus indistinguish-
able, but the simulations of Daligault �10� show that two
clusters of the same size can in fact have different morpholo-
gies. We currently do not know what effects, if any, a viola-
tion of either of these assumptions would have on our results.

Further molecular dynamics simulations are imperative to
understand nucleation in an OCP. It is evident from Eqs.
�17�–�19� that the steady-state nucleation rate may be written
as

J = NI�pF��� , �22�

where F��� is a function only of �. Numerically confirming
that the nucleation rate scales linearly with NI and �p should
be simple. One could then deduce F���, and hence J, by
measuring the nucleation rate for several different values of
�. Calculations for �m���210 would be particularly use-
ful. Figure 1 shows that there is an enormous difference be-
tween our results and those of previous authors: our model
predicts that some clusters should form rather quickly,
whereas other models predict that clusters essentially never
form.
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TABLE I. Steady-state nucleation rates and critical cluster sizes for NI=4394: “JMD” is the inferred
nucleation rate from the simulations of �10�, “�this work�” denotes a quantity calculated from our model, and
“�previous�” denotes a quantity calculated using the model of previous authors.

� JMD /�p J /�p J /�p i� i�

�this work� �previous� �this work� �previous�

400 �0.2 0.4 1�10−7 4 51

300 �0.1 2 2�10−8 3 91
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APPENDIX: ENTROPY OF MIXING IN A ONE-
COMPONENT PLASMA

We follow the treatment of �36� and derive the ideal en-
tropy of mixing of clusters in an OCP. The entropy of an
ideal system of Ni indistinguishable particles of mass mi at
temperature T and within a volume V is

Si�V�
kB

= Ni�ln� V

Ni
	 +

5

2
+

3

2
ln�2�mikBT

h2 	
 . �A1�

The ideal entropy of mixing is thus


Smixing = �
i=1

�

�Si�Vtotal� − Si�Vi�� , �A2�

where

Vi =
ZiNi

ne
�A3�

is the fractional volume occupied by the Ni clusters of charge
Zi and

Vtotal = �
i=1

�

Vi =
�Z�Ntotal

ne
�A4�

is the total volume of the system. The Vi’s are set by de-
manding both local charge neutrality and that ne be constant
throughout the medium. It follows that


Smixing

kB
= �

i=1

�

Ni ln�Vtotal

Vi
	 �A5�

and hence


Smixing

kB
= − �

i=1

�

Ni ln� ZiNi

�Z�Ntotal
	 . �A6�
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